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Abstract

Objective: We sought to evaluate the impact of different antineoplastic treatment methods on systolic and diastolic myocardial
function, and the feasibility estimation of regional deformation parameters with non-Doppler 2D echocardiography in rats.

Background: The optimal method for quantitative assessment of global and regional ventricular function in rats and the impact
of complex oncological multimodal therapy on left- and right-ventricular function in rats remains unclear.

Methods: 90 rats after subperitoneal implantation of syngenetic colonic carcinoma cells underwent different onclogical
treatment methods and were diveded into one control group and five treatment groups (with 15 rats in each group): group |
= control group (without operation and without medication), group 2 = operation group without additional therapy, group 3 =
combination of operation and photodynamic therapy, group 4 = operation in combination with hyperthermic intraoperative
peritoneal chemotherapy with mitomycine, and group 5 = operation in combination with hyperthermic intraoperative peritoneal
chemotherapy with gemcitabine, group 6 = operation in combination with taurolidin i.p. instillation. Echocardiographic
examination with estimation of wall thickness, diameters, left ventricular fractional shortening, ejection fraction, early and late
diastolic transmitral and myocardial velocities, radial and circumferential strain were performed 3—4 days after therapy.

Results: There was an increase of LVEDD and LVESD in all groups after the follow-up period (P = 0.0037). Other LV
dimensions, FS and EF as well as diastolic mitral filling parameters measured by echocardiography were not significantly affected
by the different treatments. Values for right ventricular dimensions and function remained unchanged, whereas circumferential
2D strain of the inferior wall was slightly, but significantly reduced under the treatment (-18.1 + 2.5 before and -16.2 + 2.9 %
after treatment; P = 0.001) without differences between the single treatment groups.

Conclusion: It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats under
different oncological therapy. The deformation was decreased under overall treatment without influence by one specific therapy.
Therefore, deformation assessment with non-Doppler 2D strain echocardiography is more sensitive than conventional
echocardiography for assessing myocardial dysfunction in rats under oncological treatment.
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Background

Clinical echocardiography has been established as a safe,
reproducible, and accurate assessment of cardiac anat-
omy, hemodynamics, and cardiac function. Commer-
cially available ultrasound imaging systems are capable of
resolution approaching that of magnetic resonance imag-
ing as a result of recent computer and transducer technol-
ogy. Understandably, there is increasing interest in using
echocardiography as a basic research tool with standard
laboratory animals. Knowledge of baseline normal values
in commonly used rat species are limited [1,2]. Previous
experimental studies could give some information about
right and left ventricular contractility in sheep, pigs and
dogs for with new technologies of 2D strain and tissue
Doppler imaging [2]. Echocardiography has become
widely used to evaluate cardiac function in animal models
of cardiac diseases. Because of its non-invasive character,
echocardiography allows serial in vivo evaluation of car-
diac dimensions, ejection fraction, and diastolic parame-
ters. New oncological complex therapeutic modalities
have the potential to affect cardiovascular hemodynam-
ics, preload, afterload, myocardial contractility, and may
induce acute and chronic cardiac impairment. Therefore,
these new therapy options have the potential to signifi-
cantly alter echocardiographic parameters. There is lim-
ited knowledge about the impact of the combination of
surgery, hyperthermia, and cytostatic therapy in sick rats.
Knowledge of baseline echocardiographic (incl. tissue
Doppler values and 2D echocardiography) normal values
and changes under surgical and cytostatic therapy in an
animal model with peritoneal metastasis would be worth-
while. This study was performed to assess the differential
impact of different types and combinations of complex
oncological therapy methods in rats with peritoneal
metastasis.

Methods

Animal Preparation

All animal studies were performed in accordance with
guidelines for the care and use of laboratory animals at
our institutions. 90 male BDIX/HansHsd rats with a body
weight between 227 and 312 g were obtained from a sin-
gle breeding colony (Harlan Winkelmann, Borchen). Ani-
mals were individually housed and followed free access to
standard laboratory food and water ad libitum and 12
hours of light per day. Maintance and care were carried
out according to the guidelines of the local Animal Protec-
tion Commission. This protocol was approved by our
local animal protection committee.

A new multimodal treatment system in tumor bearing rats
was tested. For this purpose 2 x 105 syngenetic colonic car-
cinoma cells (DHD/K12/TRb) were implanted subperito-
neal in right upper quadrant in male BDIX rats by a
median mini-laparotomy under general i.p. anesthesia.
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After implantation rats were randomized into 6 groups (5
treatment groups, 1 control group). There were 15 rats in
every group. 21 days after tumor implantation all animals
of the treatment groups were operated by a standard
median laparotomy under general i.p. anesthesia from 6
cm and tumor spread was analysed. After that, we created
a surgical tumour debulking with the aim of complete
tumour removal in all animals. 4 groups underwent an
additional treatment like Hyperthermic Intraoperative
Peritoneal Chemotherapy (HIPEC) with mitomycine (15
mg/m?2 body surface area) or with gemcitabine (24 mg/kg
body weight) (group 1 and 2, respectively), Photody-
namic Therapy (PDT) (group 3), taurolidine i.p. instilla-
tion (group 4). The rats of one group underwent only
surgical debulking (group 5). 21 days after the surgical
procedure all animals were sacrified in CO, chamber and
tumor weight, ascites volume and tumor spread, classified
by a modified Peritoneal Cancer Index (PCI) were
assessed by two independent observers.

The rats were anesthetized with xylazine (3.7 mg/kg i.p.)
and ketamine (66.5 mg/kg i.p.), the anaesthesia was
maintained throughout the echocardiographic examina-
tion, and electrocardiography was continuously moni-
tored from limb leads. Animals were considered
sufficiently anesthetized when they became totally unre-
sponsive to a moderate pain stimulus while still normally
breathing spontaneously (absence of respiratory depres-
sion, animals were not intubated). The anterior chest was
shaved and the rats were postioned in left lateral decubi-
tus position during image acquisition.

Echocardiographic examination

Echocardiographic studies were performed (VIVID 7
dimension system; General Electric-Vingmed Ultrasound,
Horton Norway). Images were obtained using a 10S trans-
ducer (5.5-12 MHz) with high temporal and spatial reso-
lution. The transducer was placed directly on the chest
wall. A complete 2-dimensional, M-mode (according to
standards of American Society of Echocardiography), and
color and tissue Doppler echocardiogram was performed
under anesthesia.

Using a zoomed image window, color Doppler myocar-
dial velocity data were acquired at a frame rate of 205-230
frames/s, a sector angle of 30 degrees, and a image depth
of 15 mm. Beam focus was set at 10 mm. Digital data of 5
consecutive heart cycles were recorded and transferred to
a personal computer workstation for offline analysis.

Circumferential 2D strain was calculated from the par-
asternal short axis view (anterior septal and inferior mid
wall). For radial contractility measurements, strain pro-
files were analyzed on the inferior and anterior myocar-
dium. Peak systolic strain values were measured in each of
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5 heart cycles. The maximal and minimal values were dis-
carded, and the remaining 3 values were averaged. We did
not measure strain rate with the speckle tracking method
because of the too low temporal resolution and the
smoothing of the curves of this method.

Systolic 2-dimensional strain (reflects relative longitudi-
nal shortening = negative values, and longitudinal elonga-
tion or stretching = positive values, compared with end
diastole in %), and strain rate (reflects the velocity of
strain change) were calculated with the new software for
echocardiographic quantification as previously described,
based on real-time tracking of natural acoustic marker
during two consecutive frames by 2-dimensional strain
software. In addition, myocardial velocities with estima-
tion of longitudinal displacement (systolic time velocity
integral), strain, strain rate, and acceleration during isovo-
lumic contraction were measured in the same segments
with conventional TDE [3].

Images and offline reconstructed 2D strain images were
compared for each individual rat and interpreted by two
investigators, blinded to experimental information and
timing of the studies. 2D strain and strain rate were calcu-
lated as previously described [4].

Data analysis

The RV morphology was assessed as RV end-diastolic
diameter (RVEDD). To assess RV function, the base-to-
apex shortening during systole, measured as the tricuspid
annular plane systolic excursion (TAPSE) of the lateral
portion of the tricuspid annular plane, was recorded in
the M-mode format under 2D echocardiographic guid-
ance from the apical 4-chamber view.

Radial and longitudinal myocardial strain rate and strain
were calculated from color Doppler velocity data using
special software (Echo Pac, GE Medical Systems) as previ-
ously described [5].

For analysis, rats divided into two groups: group A with
potential cardiotoxic therapy (group 1 and 2) and group
B with non-cardiotoxic therapy (group 3-5).

Statistical analysis

Values are expressed as mean + standard deviation (SD)
unless indicated otherwise. Groups were compared by
parametric or non-parametric tests (t-tests and Wilcoxon-
Mann-Whitney tests, resp.). More than 2 groups were ana-
lysed using ANOVA (symmetrically distributed observa-
tions) or Kruskal-Wallis test (otherwise). Post-hoc tests
were performed (if significant differences were proved
globally) with the help of multiple tests or pair-wise com-
parisons (with the same error of the 1stkind in 3 groups -
closed test procedure). Categorical data were tested by
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means of Fisher's exact test, in particular differences in
sensitivity, specificity and accuracy. Proceeding on the
assumption that SR measurements are independent from
tethering effects of adjunctive segments we choose the seg-
ment as statistical unity in the corresponding tests. Simple
linear regression, intra-class correlation and Kappa were
used for measurement comparisons.

Because of the fact that the calculated p-values are to be
understood as explorative ones, no adjustments for multi-
ple testing were made. Additionally, no generalisation of
the results can be undertaken, particularly not in the sense
of superiority.

Results

Feasibility

Echocardiographic measurements were possible in all rats
before and after treatment. All animals survived and we
did not encounter any hemodynamic or respiratory insta-
bility or arrhythmias during sedation, examination, onco-
logical treatment or follow-up.

Effects of oncological treatment

The heart rate after follow-up was higher in the control
group (235 + 34 vs 274 + 47 bpm; P = 0.006), whereas it
remained unchanged in rats of the treatment group
(groups 2-6) 231 + 17 vs 185 + 27 bpm; P = 0.62).

The hemodynamic effects in normal animals as well as in
the different treatment groups are summarized in Table 1,
2, 3. There was an increase of LVEDD and LVESD in all
groups after the follow-up period (P = 0.0037). Other LV
dimensions, FS and EF measured by echocardiography
were not significantly affected by the different treatments.
Diastolic mitral filling parameters and myocardial veloci-
ties were not significantly affected by the type of treatment
(figures 1+2). Values for right ventricular dimensions and
function (TAPSE) remained unchanged under treatment
and there were no differences between the groups (see fig-
ures 1,2,3,4,5,6,7)

2D strain echocardiography measurements

The changes of values for radial and circumferential con-
traction were summarized in Table 3. There are heteroge-
neous values of circumferential strain: circumferential
strain baseline values of the anterior wall were higher
compared with values of the inferior wall in all animals:
22.0+2.2vs17.5+3.1%; P =0.001).

In all rats after treatment, the strain profiles demonstrated
a postsystolic thickening pattern with circumferential
strain in the inferior wall segment, but not in the control
group (figures 8+9).
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Table I: Characteristics and echocardiographic data of the study animals

Group 2—-6 before/  Group | Group 2 Group 3 Group 4 Group 5 Group 6
after therapy
Body mass — g
Mean 275 282 267 288 269 275 274
SD 23 26 24 25 24 20 23
Range 227-312 258-318 227-287 247-312 235-306 237-291 235-312
Heart rate — bpm
Mean 263/261 265/274* 260/253 277/260 260/253 260/265 259/268
SD 17127 H/11 21129 12/22 20/38 18/23 14/27
Range 231-289/185-311 223-249/215-287 244-288/221-296 256-288/234-298 235-289/185 289 245-289/234-300 231-278/221-311
Enddiastolic
diameter-mm
Mean 7/7.2% 6.9/7.2% 6.7/7.1% 7.6/7.8 6.6/6.8 7.1/7.3 6.8/7.1
SD 0.7/0.6 0.64/0.62 0.67/0.43 0.29/0.53 0.17/0.84 0.25/0.30 0.7/0.4
Range 5.0-8.1/5.5-8.7 6.3-7.8/6.5-7.9 6.0-78/6.4—-76 73-8.1/7.1-87 5.0-74/55-73 6.8-7.6/6.9-7.8 5.4-7.6/6.5-7.9
Endsystolic
diameter- mm
Mean 2.8/3.1% 2.7/3.0% 2.6/3.0* 2.7/3.3 2.512.7 2.6/2.8 2527
SD 0.6/0.7 0.6/0.67 0.56/0.65 0.54/0.62 0.4/0.45 0.37/0.34 0.34/0.27
Range 2.1-4.1/2.1-4.0 2.2 -4.012.34.1 23-4.1/24-42 25-4.1/2.6-4.0 2.2-4.0/2.3-4.1 23-4.1122-4.1 2.3-4.0/2.3-4.1
Enddiastolic
septal wall-mm
Mean 1.3/1.3 1.3/1.3 1.3/1.2 1.2/1.2 1.6/1.5 1.2/1,2 1.4/1.4
SD 0.20/0.22 0.14/0.09 0.3/0.11 0.08/0.10 0.23/0.17 0.08/0.05 0.33/0.33
Range 1-2.0/1.1-2.0 1.2-1.5/1.2-1.4 1.1-1.8/1.1-1.4 I1-1.3/1.1-1.4 1.3-20/1.2-17 11=1.3/1.1 =12 1.0-1.9/1.1-1.4
Enddiastolic
inferior wall-mm
Mean 1.4/1.4 1.22/1.3 1.48/1.28 1.25/1.30 1.6/1.6 1.2/1.2 1.4/1.5
SD 0.3/0.3 0.09/0.14 0.2/0.1 0.10/0.12 0.41/0.51 0.13/0.082 0.27/0.38
Range 1.1-2.3/1.1-2.6 11-1.3/1.1-1.4 1.2-22/1.1-1.4 1.1-1.4/1.1-14 12-23/1.2-26 L1-1.4/1.1 - 1.3 1.1-1.9/1.2-2.3
Fractional
shortening-%
Mean 36.6/37.1 35.0/36.5 36.2/35.0 33.0/33.8 40. 0/43.2 34/35 39/38
SD 4.9/5.2 1.5/1.5 3.5/2.7 1.8/2.2 5.2/6.1 2.5/2.3 6.3/5.5
Range 31-52/31-53 34-36/35-38 34-42/32-39 32-34/31-37 34-47/37-53 31-37/32-38 32-52/31-45
Left ventricular
ejection fraction-%
Mean 73174 71172 71170 74/74 75/78 71172 74/74
SD 5/4 2/4 5/3.5 2.5/2.1 6.7-69 1.7/2.5 7.3/49
Range 62-87/66-88 68-73/66 — 75 67 —79/66-75 71-78/71-76 67 —83/70 — 88 68 — 73/69-74 62-87/67-81
Right ventricular
enddiastolic
diameter-mm
Mean 3.4/3.5 3.5/3.6 3.4/3.6 3.4/3.7 3.34/3.45 3.3/35 3.2/3.4
SD 0.16/0.14 0.14/0.13 0.22/0.21 0.21/0.23 0.16/0.21 0.21/0.22 0.19/0.22
Range 33-4.0/35-4.1 34-4.1/34-43 33-4032-43 3441/33-43 34-4.1/32-43 32-39/34-4.1 34-39/34-4.1
Tricuspid annular plane
Systolic excursion
(TAPSE)-mm
Mean 1.9/1.9 1.85/1.82 1.94/1.86 1.88/1.95 1.88/1.95 1.9/1.9 1.91/1.92
SD 0.12/0.11 0.17/0.10 0.16/0.11 0.13/0.08 0.13/0.09 0.11/0.09 0.09/0.14
Range 1.7 -22/1.7-2.1 1.7-21/1.7-19 1.8-22/1.7-2.0 1.7-2.1/1.8-2.0 1.7-2.1/1.8-2.0 1.7-2.0/1.8-2.0 1.8-2.0/1.7-2.1
Group | = control group (without operation and without medication)
Group 2 = operation group without additional therapy
Group 3 = combination of operation and photodynamic therapy
Group 4 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with mitomycine
Group 5 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with gemcitabine
Group 6 = operation in combination with taurolidin i.p. instillation;
*P <0.05 *P<0.00l
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Table 2: Diastolic function parameters
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Group 2-6 Group | Group 2 Group 3 Group 4 Group 5 Group 6
Before/after
therapy
E-wave — cm/s
Mean 76175 73176 71.8/71.6 78/78.7 78/70.3 75.8/72.3 75.6/79.0
SD 7.6/10.2 4.2/2.8 4.0/4.0 8.3/8.2 10.5/10.1 7.6/8.6 7.1/14.1
Range ?(6”— 98/57— 69 —78/72-78 66-76/68-78 68-88/69-88 69-98/57-87 69-88/66—89 68-87/67-101
A-wave- cm/s
Mean 45/52 42/42 43.6/44.4 47.3/145.7 45/44 46/45 45.2/47.3
SD 5.0/6.4 5.1/6.1 5.9/6.2 6.3/8.3 4/3.7 4.8/2.7 5.1/5.4
Range 2151 —57/31 - 34-45/35-50 35-50/35-51 40-56/34-56 40-50/43-45 41-51/41-49 41-57/31-48
E/A ratio
Mean 1.69/1.69 1.78/1.83 1.67/1.63 1.68/1.76 1.77/1.59 1.66/1.60 1.68/1.81
SD 0.27/0.47 0.34/0.29 0.23/0.21 0.33/0.33 0.36/0.23 0.25/0.22 0.21/0.18
Range :%‘; - %.‘315/ 1.53-2.29/1.52-2.23  1.38-2.0/1.38-1.94 1.29-2.20/1.25-2.24 1.4-2.45/1.27-1.98 1.45-2.15/1.35-1.98  1.44-2.0/1.34-1.98
Mitral inflow
deceleration
time — msec
Mean 48.6/48.2 50.2/50.0 47.0/48.2 46.8/46.3 47.7147.6 50.8/49.3 49.8/49.3
SD 3.4/3.2 4.7/4.5 2.5/4.9 3.1/2.58 2.6/2.1 3.7125 3.5/3.1
Range 43-56/43-55 46 — 57/45-56 44-50/43-55 43-52/44-50 43-50/45-50 45-55/47-53 46-56/45-54
Tissue Doppler
E'-cm/s
Mean 2.82.9 2.87/2.95 2.74/2.80 2.65/3.02 2.8/2.8 2.78/2.75 2.7512.91
SD 0.28/0.27 0.12/0.10 0.22/0.38 0.41/0.18 0.23/0.36 0.22/0.25 0.28/0.17
Range %% - 344/ 2.7-3.9/2.3 -3.4 24-3.0/24-3.4 2.2-3.4/28-3.3 2.6-3.1/2.3-3.4 2.4-3.0/2.4-3.0 2.32-3.1/2.7-3.2
3-34
Tissue Doppler
A'-cm/s
Mean 2.1/2.1 2.1/1.73 2.12/2.22 2.3/2.3 2.16/1.88 2.23/2.23 1.89/1.96
SD 0.3/0.31 0.31/0.26 0.34/0.31 0.08/0.19 0.41/0.34 0.12/0.16 0.29/0.37
Range :32 —226.90/ 1.7-2.4/1.5-2.0 1.6-2.5/1.8 -2.6 2.2-2.4/2.0-2.5 1.6-2.9/1.5-2.3 2.1-2.4/2.0-2.4 1.49-2.4/1.44-2.4
E to E' ratio
Mean 27.8/26.2 25.4/25.8 26.3/25.9 30.1/26.2 27.7/25.0 27.3/26.5 27.6/27.1
SD 3.7/3.8 1.17/1.29 2.25/3.99 6.18/3.33 2.2/33 3.0/4.5 3.5/4.7
Range %(I)z —331.7/ 24.1-26.9/24.0-27.1  24.4-30.0/20.6-30.4 21.2-37.7/20.9 —-29.3 26.3-31.8/21.1-30.4 23 -30.8/22.3-342  23.4-34.2/22.9-35.4

Group 1-6 (see Table 1)

Radial strain parameters were not significantly affected by
the type of treatment (Table 3). Circumferential strain of
the inferior wall was reduced after treatment in group 6 (P
=0.02); and compared with the group 1 (controls) the cir-
cumferential strain values were reduced after follow-up in
the overall treatment group (group 1: -18.0 + 2.1 before
and -17.25 + 3.3% after vs group 2-6: -18.1 + 2.5 before
and -16.2 + 2.9% after; P = 0.001). Circumferential strain
between the single treatment groups were not significant
different (table 3, figures 10, 11).

Discussion

This is the first study demonstrating the feasibility of 2D
strain echocardiography in rats for noninvasive quantifi-
cation of regional ventricular function before and after
oncological treatment. We could show that conventional
systolic and diastolic parameters remained unaffected by
the treatment, whereas circumferential 2D strain of the
inferior wall was slightly, but significantly reduced after
the treatment without differences between the single treat-
ment groups.

Previous studies with animal models have examined a
wide variety of cardiac diseases and therapies with a trend
from invasive to non-invasive hemodynamic assessment
in recent years.

M-mode and 2D echocardiography are adequate in the
absence of regional wall-motion abnormalities. However,
the small size of the rat heart and the relatively fast heart
rate preclude accurate measurements in case of regional
wall-motion abnormalities Previous studies demon-
strated that the myocardial velocity gradient derived from
Doppler tissue imaging was impaired in rats with pressure
overload-induced left ventricular hypertrophy [6]. Strain
and strain rate (SR) are useful for quantification of
changes and spatial distribution of regional contractile
function in rats [7].

Cytostatic agents, surgical procedures, and anesthetic
agents are known to have effects on myocardial function.
Therefore, the choice of anesthetic agent and the poten-
tially cardiotoxic therapy have the potential to affect
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Table 3: Radial and circumferential 2D strain
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Group 2-6 Before/after therapy Group | Group 2 Group 3 Group 4 Group 5 Group 6
Radial Strain
Anterior Strain-%
Mean 21.6/22.4 24.2/22.7 20.6/21.4 22.6/21.6 22.1/22.8 21.8/22.1 21.0/23.5
SD 4.0/4.0 2.9/1.7 2.4/1.8 3.0/3.6 8.5/6.2 1.5/1.3 1.9/5.2
Range 12.6-38.0/18.0-36.0 21-28/21-25  18-24/19-24  19-27/18-28  12.6-38.0/18-35  19-23/20-24 18-24/20-36
Inferior Strain — %
Mean 20.0/19.4 21.2/18.5 20.4/19.8 20.5/18.8 21.6/22.5 19.8/18.5 18.4/18.1
SD 4.3/4.1 2.2/2.6 2.3/2.9 4.5/1.3 6.7/7.5 4.1/2.1 3.5/3.2
Range 11-35/11-37 18-23/16-22  17-22/15-22  17-29/17-21 17-35/16-37 12-23/16-22 11-24/11-22
Circumferential strain
Anterior Strain-%
Mean -22.1/-22.6 -22.0/-22.0 -22.0/-21.6 -22.0/-21.8 -22.3/23.0 -21.5/23.8 -22.4/-22.8
SD 2.5/2.5 3.6/1.6 2.3/3.4 0.89/2.7 3.112.9 2.8/1.9 3.2/2.0
Range 17-26.6/18-27 19-26/20-24  18-24/18-26  21-23/18-25 18-25/19-27 19-25/21-26  17-26.6/19-25
Inferior Strain-%
Mean -18.1/-16.2* -18.0/-17.2 -17.8/-16.2 -16.8/16.3 -17.6/-16.8 -18.3/-16.3 -19.6/-15.7
SD 2.5/2.9 2.2/33 1.6/3.6 0.76/1.2 2.1/2.8 1.7/1.5 3.8/4.5
Range 14-25/9-22 16-21/14-21 16-19/12-22  16-18/15-18 15-21/13-21 16-21/14-18 14-25/9-22

Group -6 (see Table I)

echocardiographic data directly [8]. Mitomycine and gem-
citabine have the potential for a decrease of contractility
and direct cardiotoxic effects. Xylazine, however, is con-
sidered an clonidine analog, which can result in hypoten-
tion and bradycardia, i.e. counteracting the global
cardiovascular effects of ketamine. Ketamine has been
previously shown in animal models to negatively affect
diastolic function [9]. However, these studies were con-
ducted in the presence of pharmacologic blockade of the
autonomic nervous system, which was not the case on our
rats. In our study, LV dimensions, EF, and diastolic func-
tion were not significantly affected by the sedation or sur-
gical plus oncological therapy.

Figure |
Pw-Doppler measurement of the transmitral flow velocity
obtained from the apical view.

It was assumed that left-ventricular long-axis function
may be more sensitive to ischemia than short-axis func-
tion, others could demonstrate that circumferential strain
reduction and disorders in twisting are very early signs of
myocardial damage in some entities [10,11]. Serri et al.
demonstrated that 2D strain echocardiography identified
early, subclinical global systolic dysfunction in patients
with hypertrophic cardiomyopathy [11]. Thus, TDI and
2D strain echocardiographic data are complementary to
short axis scans (indicating wall thickening) and to non-
contrast harmonic imaging echocardiography (endocar-
dial border detection).

In both in vitro and in vivo models, non-Doppler 2D strain
echocardiography demonstrated a good correlation and

wemis) -2.
v-1.39 cmis

Figure 2

Tissue Doppler measurement from the apical view with cal-
culation of systolic and diastolic velocities of the basal seg-
ments (septum and lateral wall).
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M-Mode from the short axis view with example of calculation
of the LV dimensions at baseline.
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Figure 5

Boxplot analysis of tricuspid annular plane systolic excursion
(TAPSE) in the control and therapy group. The white boxes:
before; grey boxes: after therapy.
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Figure 4
Boxplot analysis of fractional shortening (FS) in the control Figure 6
and therapy group. The white boxes: before; grey boxes: Boxplot analysis E/E' in the control and therapy group. The
after therapy. white boxes: before; grey boxes: after therapy.
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Figure 7

Boxplot analysis of E/A in the control and therapy group. The
white boxes: before; grey boxes: after therapy.

agreement with sonomicrometry values under different
contractile conditions [12,13]. Strain and SR measure-
ments that are obtained by the non-Doppler 2D strain
echocardiograpahy correlate well with tissue Doppler-
derived measurements [5]. Compared to TDI based
echocardiography, non TDI-2D-strain seems to have a
particularly low inter- and intraobserver variability
[12,14]

TDI- and non Doppler-2D strain echocardiography per-
mit quantitative assessment of global and regional ven-
tricular function [12] and could therefore improve the
diagnostic accuracy especially for the inexperienced
observer to detect regional wall motion abnormalities.
Hirano et al. [7] found that absolute peak systolic strain
values were consistently 20% lower than percent wall
thickening. This difference could result from the calcula-
tion distance of SR used in their study, which might not
have been adapted to the rat heart size. The assessment of
percent change in SR and strain remains useful.

In contrast to other studies, we could not see postsystolic
thickening or systolic wall thinning, under ischemic con-
ditions [7].

Our findings regarding a possible temporary disturbance
of the LV torsion (decreased circumferential deformation)
due to possible afterload mismatch is in accordance to
first human findings indicating reduced and delayed

http://www.cardiovascularultrasound.com/content/5/1/23

diastolic untwisting with aging [10], and uniformly
decreased segmental LV torsion in patients with amyloid-
related cardiomyopathy measured with 2D strain echocar-
diography [11].

Conclusion

In conclusion, our results demonstrate a high technical
reproducibility and diagnostic accuracy with both good
spatial and temporal resolution of conventional 2D-, TDI-
and Non-Doppler 2D strain echocardiography.

We conclude that the demonstrated negative effect on cir-
cumferential strain of the inferior wall was a general effect
of the sedation plus oncological therapy and not induced
by one special modality of therapy. Deformation assess-
ment with non-Doppler 2D strain echocardiography is
more sensitive than conventional echocardiography for
assessing myocardial dysfunction in rats under oncologi-
cal treatment.

Non-Doppler 2D strain echocardiography represents a
new, powerful method for the evaluation and quantifica-
tion of global and regional myocardial function for exper-
imental in vivo protocols in small animals.

Limitations

The methods used in this study were not compared to a
gold standard technique (e.g. MRI, sonomicrometry) as
these methods were not part of the protocol.

The heart rate in the animals was greater than 300/min,
even under anesthetic conditions. The frame rate had to
be set between 180 and 210 for tissue Doppler measure-
ments and between 60 and 80 for non-Doppler 2D strain
calculations, in order to balance the requirements for tem-
poral and spatial resolution.

Deformation measurement is limited in the short axis
views due to twisting and swinging in the azimuthal plane
of the heart and the movement by respiration. We pre-
ferred these views for deformation calculation because of
the difficulty in acquiring good apical images as previ-
ously described [7].

Histological examinations and follow-up examinations
were not performed. We can only speculate about the tem-
porary character of the changes of circumferential strain

values in the treatment group.

Abbreviations
LV = left ventricular

ECG = electrocardiogram
pw- Doppler = pulsed wave Doppler
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Non-Doppler 2D strain measurements of the radial deformation of the anterior and inferior wall at baseline.

LVEF = left ventricular ejection fraction
2D = two-dimensional

TDI = tissue Doppler imaging

SR = strain rate

ROI = region of interest
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Figure 9
A and B Non-Doppler 2D strain measurements of the circumferential deformation of the anterior and inferior wall at baseline
(A) and after treatment with reduction of the maximal strain und postsystolic shortening (arrow) in the inferior wall.
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Figure 10

Boxplot analysis of non-Doppler radial 2-D strain in the con-
trol and therapy group. The white boxes: before; grey boxes:
after therapy. The plain boxes represent the anterior, the
striped boxes the inferior 2-D strain
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Figure 11

Boxplot analysis of non-Doppler circumferential 2-D strain in
the control and therapy group. The white boxes: before; grey
boxes: after therapy. The plain boxes represent the anterior,
the striped boxes the inferior 2-D strain.
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