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Abstract
Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for
noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug
or gene until a specific area of interest is reached, and then ultrasound is used to burst the
microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of
albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial
dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This
review focuses on the characteristics of microbubbles that give them therapeutic properties and
some important aspects of ultrasound parameters that are known to influence microbubble-
mediated drug delivery. In addition, current studies involving this novel therapeutical application of
microbubbles will be discussed.

Introduction
The recent advances in gene therapy and molecular biol-
ogy have improved the interest in methods of noninvasive
delivery of therapeutic agents. Besides the well known
application of microbubbles as contrast agents for diag-
nostic ultrasound, microbubbles have also been demon-
strated an effective technique for targeted delivery of drugs
and genes [1-6]. Drugs can be incorporated into the
microbubbles in a number of different ways, including
binding of the drug to the microbubble shell and attach-
ment of site-specific ligands. As perfluorocarbon-filled
microbubbles are sufficiently stable for circulating in the
vasculature as blood pool agents, they act as carriers of
these agents until the site of interest is reached. Ultra-
sound applied over the skin surface can then be used to
burst the microbubbles at this site, causing localized
release of the drug [7-10]. This technique then permits
using lower concentrations of drugs systemically, and
concentration of the drug only where it is needed. This
improved therapeutic index may be extremely advanta-

geous in cases of drugs with hazardous systemic side
effects, like cytotoxic agents. Albumin-encapsulated
microbubbles have also demonstrated to adhere to the
vessel walls in the setting of endothelial dysfunction [11].
This also may be a method of targeting delivery with
microbubbles but without the application of ultrasound.

Mechanisms for Target Drug Delivery Using Microbubbles
Two possible strategies for delivering drugs and genes
with microbubbles are emerging. The first consists on the
ultrasound-mediated microbubble destruction, which is
based on the cavitation of microbubbles induced by ultra-
sound application, and the second is the direct delivery of
substances bound to microbubbles in the absence of
ultrasound. Different drugs and genes can be incorporated
into the ultrasound contrast agents. It has already been
demonstrated that perfluorocarbon-filled albumin micro-
bubbles avidly bind proteins and synthetic oligonucle-
otides [12]. In a similar way, microbubbles can directly
take up genetic material, such as plasmids and adenovirus
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[12,13], and phospholipid-coated microbubbles have a
high affinity for chemotherapeutic drugs [14]. Further-
more, specific ligands for endothelial cell adhesion mole-
cules, such as P-selectin and leukocyte intercellular
adhesion molecule 1 (ICAM-1), can be attached to both
lipid- and albumin-encapsulated microbubbles, which
increases their deposition to activated endothelium
[15,16].

The mechanisms by which ultrasound facilitates the deliv-
ery of drugs and genes result from a complex interplay
among the therapeutic agent, the microbubble character-
istics, the target tissue, and the nature of ultrasound
energy. The presence of microbubbles in the insonified
field reduces the peak negative pressure needed to
enhance drug delivery with ultrasound. This occurs
because the microbubbles act as nuclei for cavitation,
decreasing the threshold of ultrasound energy necessary
to cause this phenomenon. The results of optical and
acoustical studies have suggested the following mecha-
nisms for microbubble destruction by ultrasound: 1- grad-
ual diffusion of gas at low acoustic power, 2- formation of
a shell defect with diffusion of gas, 3- immediate expul-
sion of the microbubble shell at high acoustic power, and
4- dispersion of the microbubble into several smaller bub-
bles. Cavitation of the bubbles is characterized by rapid
destruction of contrast agents due to a hydrodynamic
instability excited during large amplitude oscillations, and
is directly dependent on the transmission pressure
[17,18]. It has been reported that the application of ultra-
sound to contrast agents creates extravasation points in
skeletal muscle capillaries [2,19], and this phenomenon is
dependent on the applied ultrasound power. High inten-
sity ultrasound (referred to as a high mechanical index)
can rupture capillary vessels, resulting in deposit of pro-
tein and genetic material into the tissues. Skyba et al [1]
demonstrated in an exteriorized spinotrapezius prepara-
tion that ultrasonic destruction of gas-filled microbubbles
caused rupture of microvessels with diameter ≤ 7 µm (cap-
illaries), with local extravasation of red blood cells. Price
et al [2] have shown that polymer microspheres could be
driven as much as 200 µm into the parenchyma with this
method. The authors calculated that only a small number
of capillary ruptures were required to deliver large quanti-
ties of the colloidal particles to the muscle. Using the same
model of polymer microspheres bound to microbubbles
and ultrasound, it has also been demonstrated that the
ultrasound pulse interval and microvascular pressure
influence the creation of extravasation points and the
transport of microspheres to the tissue. Both were greatest
when the pulse interval was around 5 seconds, which
allows maximal microbubble replenishment within the
microcirculation after destruction by the ultrasound pulse
[19].

The formation of pores in the membranes of cells as a
result of ultrasound-induced microbubble cavitation has
been proposed as a mechanism for facilitating the drug
deposition. Taniyama et al [7] demonstrated the presence
of small holes in the surface of endothelial and vascular
smooth muscle cells immediately after transfection of a
plasmid DNA by ultrasound-mediated microbubble
destruction, using electron microscopic scanning. It was
then postulated that these transient holes in the cell sur-
face caused by microbubbles and ultrasound resulted in a
rapid translocation of plasmid DNA from outside to cyto-
plasm. Mukherjee et al [10] demonstrated by electron
microscopy of a rat heart performed during application of
ultrasound, that disruption or pore formation of the
membrane of the endothelial cells occurred with acoustic
power of 0.8 to 1.0 W/cm2. However, it was a lower inten-
sity of ultrasound (0.6 W/cm2) that caused more drug
delivery with microbubbles. More recently, voltage clamp
techniques were used to obtain real-time measurements
of membrane sonoporation in the presence of albumin-
coated microbubbles (Optison). Ultrasound increased the
transmembrane current as a direct result of membrane
resistance due to pore formation [20].

Another important therapeutic property of microbubbles
is their increased adherence to damaged vascular endothe-
lium. Albumin-coated microbubbles do not adhere to
normally functioning endothelium, but their adherence
does occur to activated endothelial cells or to extra-cellu-
lar matrix of the disrupted vascular wall, and this interac-
tion could be a marker of endothelial integrity [11].
Because of this characteristic, the delivery of drugs or
genes bound to albumin-coated microbubbles could be
selectively concentrated at the site of vascular injury in the
presence [21] or absence of ultrasound application [22].

Microbubbles Use for Gene Therapy
The clinical use of viral vectors for gene therapy is limited
because viral proteins elicit an immune response within
the target tissue [23], and have been shown to cause an
intense inflammatory activation of endothelial cells [24].
On the other hand, the nonviral delivery of vehicles, such
as plasmids and antisense oligonucleotides, has been
associated with a lower transfection efficiency and tran-
sient expression of the gene product [25]. The first pub-
lished report of targeted DNA delivery was performed in
1996, using surface ultrasound and intravenously deliv-
ered microbubbles carrying antisense oligonucleotides
[3]. In 1997, Bao et al [26] described the use of ultrasound
and albumin-coated microbubbles to enhance the trans-
fection of luciferase reporter plasmid in cultured hamster
cells. Since then, many studies have confirmed the efficacy
of ultrasound-mediated microbubble destruction for drug
and gene delivery, both in vitro and in vivo [3,7-9]. Sho-
het et al [9] demonstrated for the first time with an
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adenovirus vector that the ultrasound-mediated disrup-
tion of gas-filled microbubbles could be used to direct
transgene expression to the heart in vivo. They showed
that intravenously injected recombinant adenovirus vec-
tors encoding a beta-galactosidase reporter gene were suc-
cessfully delivered to normal rat myocardium using
microbubbles and transthoracic 1.3 MHz diagnostic ultra-
sound, at a mechanical index of 1.5, delivered at a burst of
3 frames of ultrasound every 4 to 6 cardiac cycles. Of note,
transfection was not observed if the adenovirus was
administered in the same dose without microbubbles, or
if the adenovirus was administered with microbubbles
but in the absence of ultrasound. Importantly, using the
same model the authors confirmed that plasmid trans-
gene expression can be directed to the heart, with an even
higher specificity than viral vectors, and that this expres-
sion can be regulated by repeated treatments [27].

Taniyama et al [7] have also shown effective transfection
of a plasmid DNA to endothelial and vascular smooth
muscle cells with albumin-coated microbubbles (Opti-
son) and ultrasound. In vivo studies demonstrated that
transfection of wild-type p53 plasmid DNA into balloon-
injured blood vessels was effective and resulted in signifi-
cant inhibition of the ratio of neointimal-to-medial area,
as compared with transfection of control vector. In con-
trast, transfection of p53 plasmid DNA by means of ultra-
sound without microbubbles failed to inhibit neointimal
formation in the rat carotid [7]. In a recent study, Teupe et
al [28] have documented efficient transfer of plasmids
encoding either beta-galactosidase or endothelial nitric
oxide synthase to the endothelial cells of conductance
arteries with preservation of the functional integrity of the
transfected endothelial cell layer after ultrasound
treatment.

Other Potential Therapeutic Applications of Microbubble 
Target Drug Delivery
Restenosis after vascular balloon injury or stent deploy-
ment has been shown to result from neointimal hyperpla-
sia due to smooth muscle cell migration and proliferation.
The c-myc protooncogene is responsible for the regulation
of gene expression involved in the process of intimal
hyperplasia that leads to restenosis. Synthetic antisense
oligonucleotides, such as those to the c-myc protoonco-
gene, can bind to the messenger ribonucleic acid and
inhibit the synthesis of the protooncogenes. Therefore,
antisense to c-myc protooncogene can prevent its transla-
tion into proteins that may be mediators of the pathologic
process of restenosis. These synthetic agents, when admin-
istered directly into the vessel, have successfully inhibited
restenosis after coronary or carotid injury [29]. In 1996
Porter et al [3] demonstrated that perfluorocarbon-
exposed sonicated dextrose albumin (PESDA) microbub-
bles, unlike room air-containing sonicated dextrose albu-

min microbubbles, have bioactive albumin on their
surface that can avidly bind synthetic antisense oligonu-
cleotides, and then release them in the presence of ultra-
sound. In the initial study that examined the effectiveness
of PESDA and ultrasound in enhancing the delivery of the
antisense to c-myc, 21 pigs had carotid balloon injury per-
formed with an oversized balloon catheter and were ran-
domized to receive intravenous antisense to c-myc bound
to PESDA, intravenous antisense alone, or no treatment.
The pigs that received antisense bound to PESDA also had
transcutaneous 20 kHz ultrasound applied over the
carotid wall following injections. The ultrasound targeted
group showed a significantly lower percent area stenosis
(8 ± 2%) than the two control groups (19 ± 8% and 28 ±
3%; p < 0.01) [21].

Since PESDA microbubbles adhere to sites of endothelial
injury even in the absence of ultrasound, the efficacy of
this therapy in inhibiting coronary restenosis has been
evaluated in animals. Porter et al [22] measured the
uptake of antisense to c-myc into coronary arteries using
high phase liquid chromatography in pigs. Intravenous
PESDA containing anti c-myc was given in the presence or
absence of transthoracic 1 MHz ultrasound (0.6 W/cm2).
In this study, the authors demonstrated that anti c-myc
can be selectively concentrated within a stretch-injured
coronary artery segment when given intravenously bound
to PESDA. The decrease in neointimal formation follow-
ing intravenous injection of anti c-myc with PESDA with-
out ultrasound was similar to that observed with higher
doses of the same antisense given directly into the coro-
nary artery using an infiltrator delivery system [30]. The
basis for this hypothesis stems from previous observations
that albumin-coated microbubbles adhere to activated
endothelial cells [11,21,31]. Albumin-coated microbub-
bles have been observed binding to activated leukocytes
and monocytes which slowly roll along injured venular
endothelial cells [11]. Since leukocyte and monocyte
accumulation has also been observed early following arte-
rial balloon injury [32], it is possible that PESDA micro-
bubbles were concentrated at the injured coronary artery
surface by adherence to these activated cells. Other poten-
tial mechanisms could be related to complement activa-
tion, since both albumin- and lipid-encapsulated
microbubbles take up complement proteins [33], and
thus may bind to upregulated complement receptors at
the injured surface. It was recently demonstrated that
albumin-coated microbubbles adhere to sites of arterial
endothelial dysfunction induced by balloon-injury of
carotid arteries [34]. Figure 2 illustrates an example of
microbubble binding to the endothelium of an injured
carotid artery, which was confirmed by scanning electron
microscopy. Lu et al [35] have also shown that albumin-
coated microbubbles significantly improved transgene
expression in skeletal muscle of mice, even in the absence
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of ultrasound. However, in this study, the delivery was an
intramuscular injection of microbubbles and plasmid
into otherwise normal tissue, and not in the setting of
endothelial injury [35].

Another innovative application of microbubbles and
ultrasound is in the delivery of proteins that induce
growth of endothelial cells, such as vascular endothelial
growth factor (VEGF). Mukherjee et al [10] demonstrated

Ultrasound images with low mechanical index pulse sequence scheme showing the presence of microbubbles binding to the arterial endothelium in a balloon-injured carotid artery (Panel A, right) and the absence of microbubbles in the control nonin-jured carotid artery (Panel B, right)Figure 2
Ultrasound images with low mechanical index pulse sequence scheme showing the presence of microbubbles binding to the 
arterial endothelium in a balloon-injured carotid artery (Panel A, right) and the absence of microbubbles in the control nonin-
jured carotid artery (Panel B, right). Scanning electron microscopy (Bar = 10 µm; magnification 1420 ×) revealed sites of injury 
with endothelial denudation and attachment of microbubbles (black arrows) to the denuded endothelium only in the injured 
vessel (A) and normal appearing endothelium in the control vessel (B). (Reprinted with permission from Tsutsui JM, Xie F, 
Radio SJ, Phillips P, Chomas J, Lof J et al. Non-invasive detection of carotid artery endothelial dysfunction due to 
hypertriglyceridemia and balloon injury with high frequency real time low mechanical index imaging of 
retained microbubbles. J Am Coll Cardiol 2004;44:1036-46).
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a marked increase in endothelial VEGF uptake using
ultrasound alone (eight-fold increase) and using ultra-
sound and PESDA (ten- to thirteen-fold increase, as com-
pared to control) in the myocardium of rats. In a canine
model of chronic myocardial ischemia, intravenous infu-
sion of VEGF combined with ultrasound and an albumin-
based contrast agent significantly reduced the infarct area/
risk area ratio, and increased myocardial blood flow in the
ischemic territory, suggesting a new potential therapeutic
approach for angiogenesis [36].

Optimization of Ultrasound Parameters for Cardiac Drug 
and Gene Delivery
The effect of several ultrasound parameters, including
transducer frequency and acoustic power, are known to
influence microbubble destruction and, thus, the transfec-
tion of genes and drugs. Although the optimal ultrasound
parameters for maximizing this process are not known, we
will briefly discuss some important aspects. Unger et al [6]
have shown that the type of ultrasound used to destroy
phospholipid-coated microbubbles may regulate how
much drug is released in vitro. When analyzing the
number of acoustically active particles that persist after
exposure to different types of ultrasound in a flow cham-
ber, they demonstrated that a 2.5 MHz transducer resulted

in some destruction, but the addition of a lower-fre-
quency transducer (100 kHz) significantly increased the
destruction. When the 100 kHz energy was given in a
pulsed-wave mode as opposed to a continuous wave, the
destruction of microbubbles was even faster. In a similar
way, Porter et al [21] have demonstrated that a continu-
ous wave diagnostic ultrasound frequency of 2 MHz was
not able to enhance the carotid uptake of antisense to c-
myc protooncogene (0.19 ± 0.04 µg/mg), but low-fre-
quency 20 kHz ultrasound significantly increased vascular
uptake (0.28 ± 0.04 µg/mg; p = 0.008 vs other groups)
when compared to antisense bound to PESDA alone (0.21
± 0.06 µg/mg). The results of this study suggested that a
lower frequency could be better suited to target antisense
deposition into major vessels. Because there were mini-
mal differences in peak negative pressure generated by 2
MHz and 20 kHz in this study (46 kPa and 13 kPa, respec-
tively), the enhanced uptake was attributed to a lower
threshold for cavitation with 20 kHz ultrasound
frequency.

In another study, the efficacy of ultrasound-mediated
delivery of VEGF bound to PESDA into the myocardium
of rats was evaluated with an ultrasound frequency of 1.0
MHz at various acoustical outputs (0.2, 0.4, 0.6, 0.8 and

Table 1: Ultrasound parameters and microbubbles used for delivering genes and drugs.

Author Transfection Transducer 
frequency

Deliver
y mode

Delivery 
site

Output Peak 
negative 
pressure

Microbubble Efficacy

Porter TR, et al1 Antisense c-myc 
protooncogene

1 MHz PW Coronary 
arteries

0.6 W/cm2 PESDA +

Zhou Z, et al2 VEGF 1 MHz CW Myocardium 1.2 W/cm2 Sonazoid +
Taniyama Y, et al3 Luciferase Carotid 

artery
2.5 W/cm2 Optison +

Teupe C, et al4 β-galactosidase/ 
eNOS

2.2–4.4 MHz CW Coronary 
arteries

Gas-filled 
albumin 
microbubble

+

Porter TR, et al5 Antisense c-myc 
protooncogene

2 MHz CW Carotid 
artery

13 kPa PESDA -

20 kHz CW Carotid 
artery

46 kPa PESDA +

Mukherjee D, et al6 VEGF 1.0 MHz CW Myocardium 0.2 W/cm2 0.164 MPa PESDA 9.37 ± 1.98*
1.0 MHz CW Myocardium 0.4 W/cm2 0.194 MPa PESDA 18.58 ± 2.46*
1.0 MHz CW Myocardium 0.6 W/cm2 0.328 MPa PESDA 23.12 ± 3.95*
1.0 MHz CW Myocardium 0.8 W/cm2 0.394 MPa PESDA 25.46 ± 2.78*
1.0 MHz CW Myocardium 1.0 W/cm2 0.419 MPa PESDA 26.48 ± 3.98*

Shohet RV, et al7 β-galactosidase 1.3 MHz ECG-
triggered

Myocardium Perfluorocarb
on-filled 
microbubbles

+

Bao S, et al8 Luciferase 2.25 MHz Cultured 
cells

0.2–0.4 MPa Albunex +

* Efficacy is demonstrated as mean ± SD endothelial vascular growth factor uptake by enzyme-linked immunosorbent assay. CW = continuous 
wave; ECG = electrocardiogram; eNOS = endothelial nitric oxide synthase; PESDA = perfluorocarbon-exposed sonicated dextrose and albumin; 
PW = pulsed wave; VEGF = vascular endothelial growth factor.
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1.0 W/cm2). The authors found a significant increase in
VEGF uptake with the combination of ultrasound and
PESDA at all power outputs when compared with con-
trols, but there was a dose-dependent increase in the
amount of VEGF uptake with increasing power until 0.6
W/cm2 and a subsequent plateau. Table 1 illustrates some
parameters used in previous studies for drug and gene
delivery. It seems that at higher frequencies, higher peak
negative pressures are necessary to induce cavitation-
mediated drug and gene delivery using microbubbles and
ultrasound. In a recent study of Chen et al [8] it was
shown that, when using ultrasound at diagnostic frequen-
cies, optimal ultrasound parameters for gene expression
by ultrasound-targeted microbubble destruction to the
myocardial microcirculation included a low-transmission
frequency (1.3 MHz), high mechanical index, and electro-
cardiogram triggering to allow complete filling of the
myocardial capillary bed by microbubbles. The authors
found that maximal acoustic pressure resulted in higher
myocardial gene expression, providing indirect evidence
that high peak negative pressures increase the amount of
gene delivery from microbubbles. Furthermore, the opti-
mal ultrasound parameters for targeted delivery may be
dependent on the desired site for delivery. While a trig-
gered mechanism of once every four to five seconds may
work for delivering drugs by ultrasound-mediated
destruction of microbubbles in the myocardial microcir-
culation, a more frequent pulsed delivery may be required
for vascular delivery.

However, a high peak negative pressure may have detri-
mental bioeffects. Several investigators have reported on
the occurrence of tissue hemorrhage and endothelial cell
damage after ultrasound exposure of cultured cells and
organs containing air, such as the lungs or the intestine
[37-39]. Ay et al [38] examined the functional and mor-
phological effects of ultrasound and contrast in an iso-
lated rabbit heart preparation, using increasing levels of
acoustic energy. Simultaneous exposure to contrast and
high-energy ultrasound resulted in a reversible and tran-
sient decrease in left ventricular contractile performance,
increase in the coronary perfusion pressure, increase in
the myocardial lactate release, and presence intramural
hemorrhage in the plane of ultrasound transmission.
Additionally, light microscopy revealed the presence of
capillary ruptures, erythrocyte extravasation and endothe-
lial cell damage. These effects were directly related to the
mechanical index. These studies indicate that although
high-energy ultrasound seems to be necessary to induce
tissue permeability facilitating local drug delivery, it may
also have significant bioeffects in the myocardium. There-
fore, the optimal ultrasound parameters to enhance drug
delivery with microbubbles remain to be determined.
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